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Figure 2.3.3. Poisson (dotted line) approzimation to the binomial (solid line), n =15,p=.3

Proof: By definition,

Moot = B(soX)
= E (e(“x )te“) (properties of exponentials)
= e"E (e(“t)x ) (% is constant)
= e"Mx(at), (definition of mgf)

proving the theorem. O

2.4 Differentiating Under an Integral Sign

In the previous section we encountered an instance in which we desired to interchange
the order of integration and differentiation. This situation is encountered frequently in
theoretical statistics. The purpose of this section is to characterize conditions under
which this operation is legitimate. We will also discuss interchanging the order of
differentiation and summation.

Many of these conditions can be established using standard theorems from calculus
and detailed proofs can be found in most calculus textbooks. Thus, detailed proofs
will not be presented here.

We first want to establish the method of calculating

d b(6)
dd Jae)
where —0o < a(6),b(6) < oo for all 6. The rule for differentiating (2.4.1) is called

Leibnitz’s Rule and is an application of the Fundamental Theorem of Calculus and
the chain rule.

(2.4.1) f(z,6) dz,
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Theorem 2.4.1 (Leibnitz’s Rule) If f(z,0), a(0), and b(f) are differentiable with
respect to 6, then
d b(8)
df J,

d d b0 o
a0 e = 10(0,0) 500) ~ 16000 @ + [ 5 5(2.0)ds

Notice that if a(#) and b(6) are constant, we have a special case of Leibnitz’s Rule:

de/f(a:@da:——/ 39 f(z,6)d

Thus, in general, if we have the integral of a differentiable function over a finite range,
differentiation of the integral poses no problem. If the range of integration is infinite,
however, problems can arise.

Note that the interchange of derivative and integral in the above equation equates
a partial derivative with an ordinary derivative. Formally, this must be the case since
the left-hand side is a function of only 8, while the integrand on the right-hand side
is a function of both 6 and z.

The question of whether interchanging the order of differentiation and integration
is justified is really a question of whether limits and integration can be interchanged,
since a derivative is a special kind of limit. Recall that if f(z, 6) is differentiable, then

0 f(x,9+5)—f($,9)
55 /(@0 = im ; ’
§0 we have
* o [T [ fx,0406) - f(z,0)]
69f(z,0)dx—[m}% - | dz,
while

)

Therefore, if we can justify the interchanging of the order of limits and integration,
differentiation under the integral sign will be justified. Treatment of this problem
in full generality will, unfortunately, necessitate the use of measure theory, a topic
that will not be covered in this book. However, the statements and conclusions of
some important results can be given. The following theorems are all corollaries of
Lebesgue’s Dominated Convergence Theorem (see, for example, Rudin 1976).

d % T * -f($,0+6)—f($,9)-
@/_mf(xﬁ)da:—}l_r%/;m_ dz.

Theorem 2.4.2 Suppose the function h(z,y) is continuous at yo for each z, and
there ezxists a function g(z) satisfying
i |h(z, y)| < g(z) for all z and y,
ii. f z)dz < 00.
Th,en
lim / h(z,y) dz=/ lim h(z,y)dz

YU J_ oo Yo
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The key condition in this theorem is the existence of & dominating function g(z),
with a finite integral, which ensures that the integrals cannot be too badly behaved.
We can now apply this theorem to the case we are considering by identifying h(z,y)
with the difference (f(z,0 + 6) — f(z,8))/é.

Theorem 2.4.3 Suppose f(z,0) is differentiable at 8 = 6, that is,

g £@.00+6) — £(,60)
§—0 1)

= 5510 B

exists for every x, and there erists a function g(x,8p) and a constant 6 > 0 such that

; (f($,90+5)—f(1‘,90)
’ é

< g(z,6q), for all z and |6| < bo,

i, [ g(z,60)dz < oo.
Then

(2.4.2) %/—w f(z,0)dz

*10
- = /_m [% f(z,6) a=90] dz.

Condition (i) is similar to what is known as a Lipschitz condition, a condition
that imposes smoothness on a function. Here, condition (i) is effectively bounding
the variability in the first derivative; other smoothness constraints might bound this
variability by a constant (instead of a function g), or place a bound on the variability
of the second derivative of f.

The conclusion of Theorem 2.4.3 is a little cumbersome, but it is important to realize
that although we seem to be treating 6 as a variable, the statement of the theorem
is for one value of 8. That is, for each value 8y for which f(z,8) is differentiable at
0o and satisfies conditions (i) and (ii), the order of integration and differentiation can
be interchanged. Often the distinction between 8 and 6 is not stressed and (2.4.2) is
written

d [* Sl
(2.4.3) 4 /_ f@ode= [ fe0ds

Typically, f(z,0) is differentiable at all 8, not at just one value 6p. In this case,
condition (i) of Theorem 2.4.3 can be replaced by another condition that often proves
easier to verify. By an application of the mean value theorem, it follows that, for fixed
z and 6y, and 6] < &,

f(z,60+6) - f(x,60) _ 8
6 860

z,0)

6=0p+6*(z)

for some number §*(z), where |6*(z)| < 8. Therefore, condition (i) will be satisfied
if we find a g(z, ) that satisfies condition (ii) and
(2.4.4)

;% f(z,0) <g(z,0)  for all & such that |’ — | < 6.

8=06'
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Note that in (2.4.4) §; is implicitly a function of 4, as is the case in Theorem 2.4.3.
This is permitted since the theorem is applied to each value of @ individually. From
(2.4.4) we get the following corollary.

Corollary 2.4.4 Suppose f(z,0) is differentiable in 0 and there ezists a function
g(z,0) such that (2.4.4) is satisfied and 2 g(z,0)de < oo. Then (2.4.8) holds.

Notice that both condition (i) of Theorem 2.4.3 and (2.4.4) impose a uniformity
requirement on the functions to be bounded; some type of uniformity is generally
needed before derivatives and integrals can be interchanged.

Example 2.4.5 (Interchanging integration and differentiation-I) Let X
have the exponential(\) pdf given by f(z) = (1/A)e~%/*, 0 < z < oo, and suppose
we want to calculate

d d 0 1
n _ n{ > —-z/A
(2.4.5) i EX Y /0 T (/\> e dz

for integer n > 0. If we could move the differentiation inside the integral, we would

have
d—dXEX” = Ooo 66—/\:1:" (%) e /M dx
(2.4.6) = /0 ” f\—z (; ~1) e dz
= 7\13 EX"H — ;EX".

To justify the interchange of integration and differentiation, we bound the derivative
of z"(1/A)e=/*. Now

ﬁ zne—z/\
o A

For some constant §, satisfying 0 < 6y < A, take

z’rle—I/(z\-f-&)) T
gz, A) = AT (/\—60 +1) .

- 2oy < PR (210 (since §>0)

We then have

2 zne—z/A
o A

Since the exponential distribution has all of its moments, f:o g(z,A) dz < 0o as long
as A — §p > 0, so the interchange of integration and differentiation is justified. I

<g(z,A)  for all X such that |\ — | < 6.

A=N

The property illustrated for the exponential distribution holds for a large class of
densities, which will be dealt with in Section 3.4.



